
RD-AI68 298 GENERALIZED NETWiORK IMPLEMENTRTONS(U) GEORGIA INST OF t1.2
TECH ATLANTA PRODUCTION AND DISTRIBUTION RESEARCH
CENTER J J JARVIS ET AL 1986 PDRC-86-03

UNCLASSIFIED N5-05-C87F/G 5/ NL

L flll..lffflllff

'i.
~ HU1.1 JU 12*2

-NOW

111115 IH 1- f 6

NATIONAL &WAU OF S

Poow aui ll

Generalized Network Implementationsi

John J. J3arvis
H. Donald Ratliff
Michael A. Trick

PDRC 86-03

Report fors

Joint Deployment Agency
MacDill Air Force Base, FL 33608

I
4

DTIC
ELECTE
JUN 0 3 W

Generalized Network Implementations D

John J. Jarvis
H. Donald Ratliff
Michael A. Trick

PDRC 86-03

Report by:
School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332

This work in supported by the Office of Naval Research under Contract
jNo. N00014-85-C-0797 and NOOO14-83-K-0147. Reproduction in whole or

in part is permitted for any purpose of the U. S. Government

Approved for pub*c releasel

Yitbto Lon nijudt

TABLE OF CONTENTS

1. INTRODUCTION 1
2. MODELING WITH GENERALIZED NETWORKS 3

2.2 Generalized Netork 6................. 3
2.3 The SCOPE HRMATE Model*.................... 7

3. SOLVING GENERALIZED NETWORKS 13
3.1 Linear Programming 13
3.2 Solving Linear Progrem - The Primal Simplex Method .. 15

4. STORING THE BASIS ... 18
4.1 Basis Definition IS

4.1.1 Specialization for the SCOPE Model 20
4.2 Storing the Basis 23

4.2.1 Predecessor Structure 23
4.2.2 Thread Structure *............................. 25
4.2.3 Level Structure 27
4.2.4 Reverse Thread Structure 27
4.2.5 Arc Information Structures 27
4.2.6 Dual Value Structure 31
4.*2. 7 Cycle Multiplier 31

5. H N LN•R S . oeo ooee ooooo.. o.. e ooooeooooeoeeoo0o.o 3

5.1 Choosing an Entering Arc 34
5.1.1 Fixed Page Method 36

V 5.1.2 Candidate List Methods 36

5.2 Storing Arc Data 37
5.3 Specialization for MRMATE 37

6. FINDING THE EXITING ARC 39
6.1 Calculating the Exiting Arc 41

7. UPDATING THE BASIS 45
7.1 Updating the Basin Structures 45

7.1.1 Pivot Types 45
7.1.2 Common Routines 46

7.1.2.1 HANG Routine 46
7.1.2.2 ISOLATE Routine 51
7.1.2.3 REROOT Routine 53
7.1.2.4 REVCYCREROOT Routine 55
7.1.2.5 CYCREROOT Routine 57

7.1.3 The Pivot Routines .. s. 59
7.1.3.1 Pivot Type I o.................. 59
7.1.3.2 Pivot Type 2 0 59
7.1.3.3 Pivot Type 3 2..........62.. . 62
7.1.3.4 Pivot Type 4 66
7.1.3.5 Pivot Type 5 s..................... 71
7.1.3.6 Pivot Type 6 75

7.2 Updating the Duals 75
7.2.1 Dual Values on the Cycle 79

007.2.2 Dual Values not on the Cycle so
7.3 Updating the Flows so..

8. OTHER CONCERNS o 82
8.1 Initial Basis 828.1.1 Artificial Start o.oo 83

8.1.2 Advanced Start 84
S.1.3 Specialization for MRMATE 86

8.2 Effect of Pure Network Structure 86
8.2.1 Specialization for MRMATE o..... 89

L

I
LIST OF FIGURES

2-1. Network Representation S
2-2. SCOPE Basic Model 10
2-3. SCOPE Generalized Network Model 12
4-1. Components 1.9

4-2. Valid and Invalid Basin 21
4-3. Linked Rooted Trees 24
4-4. Predecessor Structure 2645 ThedStructure 284-5" Thread Structure *.. 28

4-6. Level Structure 29
4-7. Reverse Thread Structure 30
4-8. Arc Structure •...32

6-1. Flow Required atNodes 40
6-2. Updated Column 43
7-1. Pivot Types 47
7-2. HANG Routine 54
7-3. ISOLATE Routine
7-4. REROOT Routine 54

7-5. REVCYCREROOT Routine 56
7-6. CYCREROOT Routine 58
7-7. Pivot Type 2 - Initial Position 60
7-8. Pivot Type 2 - During Pivot 61
7-9. Pivot Type 3 - Initial Position 63
7-10. Pivot Type 3 - During Pivot 64
7-11. Pivot Type 4 - Initial Position 67
7-12. Pivot Type 4 - During Pivot 68
7-13. Pivot Type 5 - Initial Position 72
7-14. Pivot Type 5 - During Pivot 73
7-15. Pivot Type 6 - Initial Position 76
7-16. Pivot Type 6 - During Pivot 77
8-1. Artificial Basis 8
8-2. Advanced Start Basis 87
8-3. Generalized Network Transformable to Pure Network ... 90
8-4. Equivalent to gAlmost Pure' Network 91

Accesion For'
NTIS CRA&I

DTIC TAB l
Unannounced 0

Justification

~~By
Distribution I SPJA4ED }

Availability Codes

D Avail and I orDist SpecialA-/&I

!
1. INTRODUCTION

G Generalized networks are an important class of optimization

models, with uses in a vide variety of fields. Thin report describes

the development and implementation of a generalized network

algorithm.

In [33, eJrvii at. al. recommend a generalized netvork model,

system for closure optimization and planning (SCOPE), for crisis

action deployment planning. In SCOPE, large generalized networks

must be repeatedly solved. Theme networks have special structure,

vhich results in computational advantages.

In this report, a generalized network implementation is developed

for solving very large generalized networks. This implementation

includes new data structures for storing the basis, in-core/out-of-

core handling of the arcm and special handling of pure network

structure.

In this report, a detailed examination of the SCOPE model is

provided and its effect on implementation issues is d'scummed. The

ISCOPE model is highly structured. This report demonstrate* how this
scructure can be used to advantage. In a companion repor [4],

extensive testing is presented which addresses the question rWhat

affects the computation time for a SCOPE model?W -

Section 2 provides an introduction to modeling with pure and

generalized networks. Section 3 gives an overview of linear

programming, as it applies to generalized network solution methods.

In section 4, the special structure of a generalized network basis in

S detailed and efficient storage methods are developed. Section 5

gives methods for handling the arc data. This includes both storage

. 1,

r ja

-". {J 10

methods and techniques for determining the arc to enter the basis. A

method for determining the arc to leave the basis is given in section

6. Section 7 describes, in detail, the algorithms used to update the

Ibasis structures. Section 8 discusses some related implementation

concerns. These include the initial basis to be used, and the effect

of embedded pure network structure. Section 9 give. a review of the

conclusions.

2. I

2

2.0 MODELING WITH GENERALIZED NETWORKS

Generalized networks, an the name suggests, are a generalization

of standard, or Opure', networks. By modifying a restriction that

occurs in pure networks, many previously intractable problems have

been modeled. Section 2.1 provides a brief overview of pure network

modeling. Section 2.2 expands this overview to include generalized

networks. Section 2.3 details the SCOPE generalized network model.

The SCOPE model is an example of generalized network model. It will

form the basis for the examples used later in this report.

2.1 Pure Networksk
A 'pure* network can be thought of as a pipeline system. This

system has suppliers and users of the materiel flaowing through the

pipe. Each of the suppliers and users has a known supply and demand

3respectively. The pipeline connects the supplier. and users. The

pipeline may have intermediate junction points which are not

suppliers or users. (An example would be a pumping station.)

1Each pipe has a known capacity. This capacity represents the

limit on the pipe expressed in the rate of flow of materiel through

the pipe. There in a unit cost associated with materiel that flows

through the pipe. This cost is linear in the quantity of materiael

in other words, if the amount flowing through a pipe is doubled, then

the cost is also doubled.

The objective is to move the materiel from the suppliers to the

3

1P I

users through the pipeline at minimum cost. This involves assigning

glow to pipes so that (1) each user gets the amount needed; (2) no

supplier sends more than available; (3) no pipe has more materiel

than its capacity; (4) no materiel enters or leaves the system except

at users or suppliers; and (5) what enters the pipe at one end,

leaves it at the other.

The suppliers, users, and junctions where two or more pipes come

together may be represented by points, called nodes. The lengthe of

pipes between points (nodes) are called arcs. Associated with each

node Is a number, called its requirement. If the requirement is

negative, then the node is a supplier, and the number is the amount

that it can supply. If the requirement is pomitive, then the node ie

a user and the number represent. the amount it demands. A zero

requirement can be used for junctions where arcs meet without

representing a supplier or user.

Associated with each node is a flag. The flag indicates whether

pro the requirement must be met exactly, or whether the absolute value of

the requirement represents an upper bound for the supplier (or user).

This accommodates models with nodes in which suppliers must ship the

full amount of their supply and for users that may or may not use the

full demand indicated for them.

Arcs have capacities, cost and direction. The node that an arc

begins at is called its OTAIL8. The ending node is the "HEAD*. For

arc number ARC theme two ends are referred to as TAIL(ARC) and

HEAD(ARC) respectively.

Figure 2-1 shove a sample network. The circles represent nodes.

The lines (arrows) between them are the arcs.

4
4

I(I

S2000

~~~~~(4,200(320)(810

(2,100)

label on arcs: (cost~capacitv)
label on nodes: demand

Fiue21 ewrkRaeetto

p5



2.2 Generalized Networks

I Generalized networks are extensions of pure networks. The

difference is that the restriction that 'flow into an arc equals flow

out of the arcQ in relaxed. Instead, a generalized network allows

for 'leaky' arcs or arcs that gain flow. The loss or gain is

\specific to each arc and can vary throughout the network. The only

requirement is that the arc must gain or lose a constant fraction of

its flow. For instance, an arc might always triple its flow; another

pipe might always quarter its flow. The fraction that the arc

changes the flow is called the multiplier. The multipliers for the

example arcs are 3 and 0.25 respectively. As a matter of convention,

,- costs are calculated by multiplying the flow that enters the arc by

the arc cost.

Because of gains and losses in a generalized network, it is

impossible to require that supply equals demand, as is normal in pure

netvork models. 'Slack' and 'surplus' arcs are required to model the

excess supply or demand that normally occurs in a generalized

netvorks. These 'slack' and 'surplus' arcs are modeled using 'self-

loops* at each node. "Self-loops' are arcs that begin and end at the

same node. Surplus arcs, associated with demand nodes, have

multipliers of +1. Slack arcs, attached to supply nodes have

multipliers of -1.

All other properties of pure networks hold for generalized

'networks. A generalized network with all multipliers equal to one is

a pure network. An arc with a multiplier of one is called a pure

arc.

Generalized network models are very useful in many problems.

6



1) In a financial model, materiel flowing in a netvork represents

money and nodes represent various points in time. Multipliers can be

used to represent increase in money due to interest.

2) In an energy allocation model, materiel flowing in a network

represents electricity, and arcs represent physical wires.

Multipliers can be used to model energy losses that result when

electricity flows along a wire.

3) In a deployment model, materiel flowing in the network are

men and equipment to be moved. Arcs represent movement, by either

airplane or ship. If materiel is moved by air then the weight

(STONS) of the materiel determines the amount that can be moved. if

movement is by sea, then the volume (MTONS) or square footage of the

movement requirement is critical. Multipliers can be used to model

conversion of weight into volume.

w
2.3 The SCOPE MRMATE Model

In [32, a method for solving a large deployment problem was

presented. This method, called System for Closure Planning and

Evaluation (SCOPE), addressed the following problem:

Given a set of assets (airplanes and ships), a set of movement

requirements (people, ammunition, etc.), and a set of ports to use,

is there a way to move the movement requirements with the available

assets through ports so that the requirements arrive at the target

area when needed?

A much more detailed examination of the problem is provided in

(33. The method proposed is based on three optimization components:

a network flow with side constraints which assigns assets to pairs of

7



ports; a generalized network flow which assigns the movement

requirements to assets; and a Bender.' constraint generator to link

together the two models. This report in concerned only with the

second of the optimization pieces.

Fundamental to the SCOPE method in the concept of channels. A

channel consists of a pair of ports, together with a number of

identical assets. One port, the Port of Embarkation (POE), is where

the movement requirements will be loaded onto the assets. The other

port, the Port of Debarkation (POD), is the destination of the

*, assets. The assets are assumed to cycle between the POE and POD.

Depending on the distance between the POE and POD, the assets may be

able to make one or more trips between the POE and POD in a mingle

time period (which can be taken as a day for simplicity). Or, if the

ports are far apart or the asset moves slowly, it may take several

days to cycle between the POE and the POD. The capability of the

channel is the rate at which the assets deliver movement requirements

to the POD from the POE.

The first optimization model in SCOPE determines the channel

capabilities. The second, generalized network model, must assign the

movement requirements to channels at specific time periods so as to

meet strategic objectives.

Suppliers in the SCOPE model are the movement requirements.

Users are time expanded channels. Time expansion refers to the fact

*that a channel can move a given amount on each day. Nodes will be

created for the channel for each day.

a Certain movement requirements cannot be moved on specific

channels. For instance, a movement requirement may not be air

transportable, so they cannot use channels using air assets. There

8



are many other restrictions. There is a certain delay involved in

getting a movement requirement to the POE, so even if a movement

requirement can use a channel, it may not be able to use it on

certain days. Arco are created from each movement requirement to

each time expanded channel node that the movement requirement can

use. (See Figure 2-2).

The interpretation of flow on an arc from movement requirement M

to channel C on day D is that amount of N will arrive at the POE

associated with C on day D and will use the assets associated with C

to be transported to the POD of C. From this information, it is

possible to determine when M will arrive at its final destination.

The cost associated with an arc depends on the value of getting M to

its final destination at that time.

There are many ways of assigning costs to the arcs, but one of

the most flexible involves time windows. Each movement requirement

has a window of days in which it is desired to arrive at its final

destination. If it arrives at its final destination within its

window there is no cost. If it arrives outside its window (either

early or late) then the cost is a function of how many days early or

*" late it arrives.

The final complication is in how to measure the size of a flow.

There are two types of channels: air and sea. The major limitation

on the amount an air channel can move is weight (STONS) of the

movement requirements. The major limitation on the sea channels is

volume (MTONS). Each movement requirement has a weight and volume,

and the relationship between theme two values depends on the movement

requirement.

To model this, the weight of the movement requirement is taken as

9



da2

Channel

Channel

I..'-day 

2

U.R 1 ~flueChannel 

dy3

14L. 2 can use Channels 
1 and2

it.R. 3 can use Channels 23n

14.Rk. 4 can' useCane 
3

4;7Figure 

2-2. SCOP'E asic M~odl

10



its size. 1f the movement requirement is sent by an air channel, no

conversion takes place. If the movement requirement is sent by a sea

channel, the weight is converted to volume by a multiplier on the

arc. For instance, if a movement requirement weighs 20 STONS and has

volume 50 MTONS, arcs to air channels vill be pure arcs (have

multiplier one) and arcs to sea channels will have multipliers of 2.5

(=50/20). Figure 2-3 provides the complete network for the example.

The network created, called the MRHATE network, has significant

structure. The major features are:

1) all nodes are either suppliers or users. In fact, this network

Is a transportation network (see Bazaraa and Jarvis [11).

2) many of the multipliers are one.

3) all arcs out of a movement requirement have one of two

multipliers.

3) many arcs have zero cost.

4) the arcs have no capacities.

The largest problem that could occur in practice is estimated to

have approximately 2000 nodes and over 500,000 arcs. Furthermore,

pthese problems must be solved repeatedly in a very short amount of
time.

The RRHATE model will be used as an example of the type of

specializations possible in implementations of generalized networks

in the remainder of this report.

m . o.

I!

]1



1-100 (.)5 s

6 50 Channel
(Air)

-3002

-2000

0600

-400

00 Channe

(Sea

3200 90

1~10 20040

!~11 400100

Fi400 2.. CPE1ee, lze2e.5)kMoe

1260 
ha n

E6.25 (Sea) c> "



1VK-rT~17'7 WV . WV 

3.0 SOLVING GENERALIZED NETWORKS

Since the generalized network model is so useful, it in important

to have a computer solution technique that will find solutions

quickly. It can be shown that generalized networks are a special

came of linear programming, so that any technique to solve linear

programming, like the Simplex method, can be used to find solutions

to this model. But there are disadvantages of using theme general

purpose algorithms. The best known methods take too much space and

are relatively slow. Fortunately, the Simplex method can be

specialized so am to take advantage of the special structure in a

generalized network. The specialized simplex method solves

generalized networks quickly using little space.

Section 3.1 Linear Programming

Linear programming i the most fundamental optimization model in

operations research. Bazaraa and Jarvis (1] provide an excellent

introduction to this field. The linear programming model employs the

i:. optimization of a linear function subject to a met of linear

constraints. A linear function in a function that is of the form:

Ca X& * CO + .... C.xn

where each of Ct, C., ... C. are constants

and xe, xe, and x. are the variables.

A linear constraint is of the form:

A, x A x ..... A. x. + B

where At, A&, ... A. and B are all constants.

When a generalized network is represented an a linear program,

13



variable x is associated with each arc. This variable represents

'N the amount of flow in the arc.

There is a linear constraint for each node. This constraint

controls the amount of the flow that exits or enters the node. The B

-# value for the constraint is the supply or demand for that node. The

constraint forces the net amount of flow at a node (including the

self-loop), to be the supply or demand for the node.

Every arc is associated with just two nodes: the tail and head

nodes for the arc. This implies that the variable associated with

each arc occurs in at most two constraints in the linear program.

Self-loops occur in only one constraint.

In matrix terms, each constraint represents a row of the

constraint matrix and each variable represents a column. The

preceding argument indicates that there are at most two non-zero

elements in each column of the constraint matrix.

Because the definition of generalized networks in this report

allows just a single multiplier for each arc, one of the non-zeros of

each column will be the multiplier on the arc. For arcs that are not

self-loops, the other non-zero element of the column will be -I. The

multiplier will be in the row associated with the constraint on the

head of the arc. The -1, for non-self-loops, is associated with the

P7 tail of the arc.

Every variable is assumed to be constrained to be nonnegative.

There are standard 'tricksa to transform variables not of this form

to the assumed form.

Since the arcs (variables) have capacities, it is necessary to

treat this problem an a linear program with upper bounds. Theme

upper bounds are linear constraints themselves. Due to the simplicity

14



of upper bounds it is possible to treat them implicitly in the

solution algorithm.

3.2 Solving Linear Programs - The Primal Simplex Method

There are many methods for solving linear programs. The most

widely used is the primal simplex method. This technique has proved

to be efficient, both in execution time and computer space.

For every linear program, there is an optimal solution with no

more than one non-zero variable for each constraint. This is

referred to as a basic optimal solution. The optimal non-zero

variables form a basis. A basis is any met of variables with the

following properties:

1) There are not more variables than constraints in the linear

program.

2) No column of the constraint matrix for any variable in the

basis can be written as a weighted cbmbination of the columns of the

other variables in the basis.

t 3) There is a feasible solution to the linear program using just

the variables in the basis.

The steps of the primal simplex method are as follovas

1) Find an initial basis.

2) Find a variable, not in the basis, to enter the basis. If none

exists, STOP. The current basis is optimal.

3) Find the variable in the basis that will leave.

4) Update the basis

5) GOTO Step 2.

One iteration of steps 2 through 4 is called a 'pivot'.

15

..,



Step I can be accomplished in various vays. The simplest method

is to take the 'slack' and 'surplus' variables that often occur in a

linear program and use them as the initial basis. Sometimes

artificial variables must be added vhere "real* slack and surplus

variables do not exist. Theme artificial variables are given a high

cost, so that the optimal solution vill not employ any of them.

It is often possible to determine a set of variables that creates

a very good solution. This usually reduces the number of pivots

required to reach optimality. The time to find a good starting

solution, called an advanced start, must be short enough not to

offset the reduced computation time for the rest of the algorithm.

Identifying a variable to enter the basis in accomplished by

determining the change in objective function if the variable is

increased by a small value. This change is called the reduced cost.

Increasing the value of the variable entering the basis vill

change the values of the current basic variables. One of these

variables will be the first to reach zero. This is the variable to

exit the basis.

The now basis consists of the old basis, without the exiting

variable, and the entering variable. Various values must be updated,

including the new variable values and the reduced costs for variables

not in the basis.

The primal simplex method can be adapted for upper bounds on

variables. Rather than treat the upper bounds as 'normal'

constraints, which would be inefficient, the definition of basis is

slightly redefined. A non-basic variable can now have value of

either zero or its upper bound. A basic variable can have any value

between zero and its upper bound. A non-basic variable at its upper

16



bound may enter the ba.is if decreasing its flow slightly improves

the objective function. When the basic variables change value (Step

3) one of them will reach its upper bound or zero firat. That

variable will be the exiting variable.

17



4.0 STORING THE BASIS

The main reason that a specialized simplex method is faster than

a general purpose simplex method for generalized networks is that the

basis has a special structure. This structure makes every simplex

computation easier. This section defines the basis structure and

gives data structures to efficiently store it.

4.1 Basis Definition

A basis in linear programming consists of a met of columns, one

for each row, with the property that no column is a weighted sum of

the others. In a generalized network, columns correspond to arcs, so

the basis is a set of arcs. Rows correspond to nodes, so there is

Vone arc in the basis for each node. The final property, called

linear independence, is more complicated to describe.

If a set of arcs is examined, the met of nodes will be

partitioned into mets of nodes that are connected to each other (see

Figure 4.1). These sets are called components. Within a component,

the arcs can form cycles. Self-loops are treated as cycles of length

1. A component can have zero, one, or more than one cycle

(components A, B, and C respectively in Figure 4.1). It is possible

to show that if a component has more than one cycle, there is at

least one arc that is the weighted sum of the other arcs in the

component. Therefore for a met of arcs to form a basis, it is

*' necessary that no component formed by the arcs have more than one

cycle. It is also possible to show that if a component has no cycle,

some other component must have more than one cycle. Therefore, it is

18

w



COMIPONENT B
12 (One Cycle)

i13

i4
5

C. ,ONFN(Two Cycles)

''6

0COONENT A

(To Cycles).

Figure 4-1. Comnonents

"-1 9



also necessary that every component have at least one cycle. So

.* every component has exactly one cycle. A component with exactly one

cycle is called a "one-tree'.

One further condition is required to ensure linear independence.

If the cycle in not a self-loop, it is possible for an arc in the

cycle to be a weighted sum of the other arcs in the cycle. A

necessary and sufficient condition for this not to occur is for the

cycle to have a cycle multiplier not equal to one. The cycle

multiplier is calculated as follows: Assign an orientation to the

cycle (clockwise or counter-clockvie). The cycle multiplier is the

product of the arc multipliers for those arcs pointed in the same

direction as the orientation, divided by the product of the arc

multipliers of those arcs pointed in the reverse direction as the

0 orientation.

To summarize, a set of arcs is a basis if the following

conditions are satisfied:

1) The number of arcs is equal to the number of nodes.

2) Each component has exactly one cycle.

3) Each component with a cycle that is not a self-loop has a

cycle multiplier that is not equal to one.

Some valid and invalid basis examples are given in Figure 4-2.

Since every multiplier in a pure network is 1, it is not possible

for a pure network basis to have a cycle that is not a self loop.

4.1.1 Specialization for the SCOPE Model

The arc multipliers in the HRMATE model have a special structure.

Since every arc connects a movement requirement to either an air or a

20



-v 2

(a) valid label: multiplier (b) valid

.4ai

: .

U'.21

.- .

(c) invalid (no cycle) (d) invalid (two cycles)

• .,, igure 4-2. Valid and Invalid Basis

.,. ri.. 21



23 3

14

label on arc: multiplier

-(e) invalid: cycle multiplier of 1

t7.

L igure 4-2. Continued

1 22



sea channel, the arcs have multipliers of either I or the conversion

factor for the movement requirement. Given the vay that cycles form

in the NRMATE model, it is easy to show that if a component has just

air channel arcs or just sea channel arcs, then the cycle associated

with the component must be a self loop. In other words, if a

component has only one type of arc then -hat component has the same

basis structure as a pure network basis. Since pure networks can be

solved more efficiently than generalized networks, it is likely that

some advantage can be taken of the basis structure in this case.

4.2 Storing the Basis

Since the basis for generalized networks has special structure,

it should be possible to store the basis in an efficient way. There

are two important factors in storing the basins storage space and

computation time.

The following sections outline a method of storing the basis,

called the linked rooted tree method. This method is similar to that

of Brown and McBride E23, but differs in some important ways.

The linked rooted tree method is based on the data structures

used for pure networks (see Kennington E5]). In this method, nodes on

the cycle are seen as roots for trees consisting of nodes not on the

cycle. These trees are then linked around the cycle (see Figure 4-

3). Each component contains one or more trees together with the

linking cycle.

4.2.1 Predecessor Structure

23

w1 d



S

'I-Z

TREE

".,

Figure 4-3. Linked Rooted Trees

24



r.

The most fundamental operation required for the manipulation is

to *go up" the tree. (Here the cycle is considered *on top* of the

tree). This in required in determining the arc to exit the basis,

for the arcs that must be checked are exactly those above the
.4

endpoints of the entering arc. It is also very useful vhen

determining the new basis (Section 7).

For any selected node not on the cycle, the predecessor (PRED) is

defined to be the (unique) node, such that there is a basic arc

connecting the two nodes and PRED is closer to the cycle than the

selected node.

For nodes on the cycle, an arbitrary orientation of the cycle is

selected. The PRED of a node on the cycle is the node just before it

*on the cycle using the selected orientation. The PRED of a node on
4.

% the cycle is also on the cycle. If the cycle is a self-loop, the

"* PRED of the cycle node is defined to be itself. (See Figure 4-4).

The PRED provides the only method of moving from one cycle node

to another under the linked rooted tree system. Also note that there

is no connections between components, for that ability is not

.' required for the simplex calculations.

4.2.2 Thread Structure

4. The thread structure (THREAD) provides a mechanism for visiting

every node in a tree. The order in which the nodes are visited is

defined to be the Opreorder traversal* (see Kennington E53). This

order has the property that if node X is on the path from Y to the

L root then node X is visited before node Y. Note that the THREAD is

only within trees, not between them. (See Figure 4-5).

25

i4"0 l



Node Pred

1 1
2 10S3 9
4 12
5 2
6 1

.-, 7 1
8 8
9 2
10 3
11 3
12 3

q 13 13

Figure 4-4. Predecessor Structure

26



The THREAD is required by the basis update routines to determine

those nodes whose duals and LEVEL. (Section 4.2.3) must be updated.

It in in this structure that the linked rooted tree method

Sdiffers from that used by Brown and McBride. In that report, the

i . THREAD vas defined traverse around the cycle in the opposite

direction of PRED.

4.2.3 Level Structure

The level structure (LEVEL) gives the *distance' of a node to the

cycle. Nodes on the cycle have a LEVEL value of zero. This

structure is required by the routine to find the exiting arc (Section

6). (See Figure 4-6).

4.2.4 Reverse Thread Structure

The reverse thread structure (RTHREAD) is simply the inverse of

the THREAD structure. This permits the visiting of nodes in reverse

S order. Typically, this structure is only used to make the basis

update more efficient. (See Figure 4-7)

* 4.2.5 Arc Information Structures

Some information on the basic arcs is required to perform the

simplex calculations. This includes the CAPACITY, arc multiplier

* (MULT) and current FLOW, to determine the arc to exit the basis; the

S arc COST, to update the dual variables; and the arc number (ARC) to

record the optimal solution. If the information on all arcs (basic

27



'fig

IN

66
4.4

Node Thread

1 6
2 5
3 12

" 4 11
5 2
6 7
7 1
8 8
9 9
10 10
11 3
12 4
13 13

d.

Figure 4-5. Thread Structure

28



. -,:..,v e 0

(D( 0o0 0 0

• '" Node Level
0

0 000

3 0

4 2
, 5 1

6 1
* 7 1

8 0
9 0
10 0
11 1
12 1
13 0

Figure 4- 6. Level Structure

29



,Ii

.4!

Node Reverse Thread

1 7
2 5

'." 3 11
S ,4 125 2

6 1
4 -. 7 6

" .8 8
9 9

. 10 10
11 4

* 12 3
13 13

"-' Figure 4-7. Reverse Thread Structure

I

. Np

."',', ,,' , VI,>.§,N,/,', ' *N% ,'.',-,' , ' '-, ; - ," - .- , -...-. -.....-.-6 .



.i and non-basic) is available, then it is only necessary to store the

ARC value explicitly. As Section 5.1 will show, however, for large

problems it is necessary to have only a limited amount of arc

0 information available at any given time. Therefore, all of the above

basic arc information must be stored.

SThe information on the basic arc that connects NODE and

PRED(NODE) is associated with NODE. Since it is not clear whether

N, the arc begins at NODE and ends at PRED(NODE) or the reverse, the ARC

value is given a sign depending on the orientation. In the former

case, ARC is positive; in the letter, ARC is negative. (See Figure 4-

8).

4.2.6 Dual Value Structure

The dual variable (DUAL) for each node is required to determine

an arc to enter the basis. Therefore, the dual for each node is

retained at all times.

4.2.7 Cycle Multiplier

The cycle multiplier (CHULT) is defined as follows: give an

orientation to the cycle$ the cycle multiplier is the product of the

. arc multipliers for arcs in the same direction an the orientation

divided by the arc multipliers of those arcs in the reverse

directioi.

CHULT is defined only for nodes on cycles that are not self-
loops. CHULT is the smem for all nodes on the mano cycle.

The cycle multiplier can be thought of as the amount of flow that

31



22 27

1 ,

2

"'3

label on arc: arc number
direction on arc: predecessor

Node Arc
' 1 15

2 7
*,-_ 3 8

4 13
5 -3

6 -1
S7 -2
,#8 22

S*.: 9 -6
- 10 -9

11 -10
12 -11
13 -27

Figure 4-8. Arc Structure

32



i! vill result if one unit of flow is sent around the cycle in the given

orientation. In a valid basis, CMULT cannot be one.

CHULT in needed to determine the arc to exit the basis, and to

update the flows. Because of the number of multiplications and

. divisions required, this is a very time-consuming number to

calculate. Fortunately, this number must be calculated just once for

each new cycle created. So pivots that do not create a nev cycle do

not require the calculation of any CHULT values.

4.3

+I

.5.

5%

.533



IL

5. Handling Arcs

In general there are far more arcs than nodes in a network model.

The handling of the arcs is therefore critical to decreasing

computation time and storage requirements. Despite the large amount

of arc data, very little data is required for any individual pivot.

This permits the storage of the arc data outside central computer

memory, normally on a high speed mam storage device.

Methods for handling the arc data was reported in detail in C84-

093. The following sections review the conclusions of that report.

- 5.1 Choosing an Entering Arc

The primal simplex method provides flexibility in the choice of

arc to enter the basis. The only property the entering arc must have

In that placing a small amount of flow on the arc will decrease the

objective function value. It is not necessary to select the arc that

will yield the greatest decrease in the objective value the most.
p --

Given the current dual values, it in easy to determine the effect

of making a small uhange in the current flow of a non-basic arc. if

the arc currently has no flow on it, inciaming the flow by one unit

. would add the following amount to the objective function:

KULT * DUAL(HEAD) - DUAL(TAIL) - COST

p. where the arc in question is from node TAIL to node HEAD and has

multiplier MULT and cost COST.

a. If the current flow on the arc is the capacity of the arc, then

. decreasing the flow by one unit would add the following amount to the

34



v. objectives

-o(HUbT * DUAL(HEAD) - DUAL(TAIL) - COST)

It might not be possible to change the flown by one unit. Some

arc in the basis could reach one of its bounds before one unit of
,V

flow in placed on the entering arc. Conversely, it might be possible

pto change the flow by more than one unit. The actual amount of

change is determined in Step 3 of the primal simplex algorithm.

The above equations are referred to as the reduced cost for the

arc. If the reduced cost is negative, the objective value would be

decreased if the non-basic arc were to enter the basis. Non-basic

arcs with negative reduced cost are eligible to enter the basis. if

there is no arc with a negative reduced cost then the current

solution is optimal.

Generally, there are many arcs that are eligible to enter the

basis at each iteration. It is necessary to choose from among those

possible. For instance, it in possible to calculate all of the

reduced costs and choose the arc with the most negative reduced cost

to enter the basis. This, generally, will have fewer pivots than

other methods but the amount of time required to calculate all of the

reduced costs would be prohibitive.

Another alter:xative is to calculate the reduced costs, one at a

.. time, and choose an arc to enter the basis as soon as one is found

with a negative reduced cost. This will minimize the amount of time

to calculate reduced costs; but it will cause many pivots which

improve, only marginally, the objective value.

In practice, two methods are used to choose an arc to enter the

basis. These methods are referred to an the fixed page method and the

candidate list method.

35

# . . . . ...... - ....-..-....-....... ° ......-



5.1.1 Fixed Page Method

In the Fixed Page method, the reduced cost for a fixed number of

arcs (a page) in calculated at each pivot. The arc with the most

negative reduced cost is then selected to enter the basis. If no arcIr. has a negative reduced cost, then a new page (of arcs) is used. The

page size (number of arcs in the page) is important. Too small a

page will cause too many pivots; too large a page will cause too much

time for the reduced cost calculation.

After each pivot, a decision must be made whether to use the same

4 page of data or to obtain a new page. One method for making this

S-" decision is to provide a re-use factor, giving the maximum number of

times a page can be used before a new page must be selected.

5.1.2 Candidate List Methods

If arcs from a variety of nodes are examined, then, when one of

them enters the basis, generally, it will not effect the reduced cost

of many of the other arcs. It is therefore possible to examine only

a subset of arcs, called a candidate list. The first step is to

create a list of arcs vitt a negative reduced cost. The arc with the

* -. most negative reduced cost is then selected to enter the basis. The

reduced costs of the arcs in the list are then recalculated, and the

.next arc to enter the basis is selected from the list. After a fixed

number of pivots, the candidate list is reformed.

Two parameters are requireda the candidate list size and the

number of iterations before reforming the list.

*36



5.2 Storing Arc Data

In both major methods for choosing an entering arc, only a small

amount of arc data in required at any given time. Information on

arcs in the basis in always required, but only a small number of non-

basic arcs ore needed. In the fixed page method, only arcs in the

page being examined are needed. In the candidate list method, only

arcs in the candidate list are required.

". This suggests maintaining arc data on a high speed mass storage

device (e.g. hard disk on a microcomputer). Only basic arc

information and a small number of search pages is maintained in core.

* When new arc data is required a page of arcs can be read in,

replacing the previous pages. The amount of data remains constant

while the actual data is constantly changing. This is called the

*in-core/out-of-corel method.

Some method is needed to store information on the non-basic

pflows. The non-basic flows are either zero or the arc's upper bound.
The various possibilities were given in (3]. If there is a large

V number of arcs then the information on the non-basic flows must also

be stored outsiJe central memory. This is slow, but it permits even

". small computers to solve extremely large problems. *

5.3 Specialization for MRMATE

The number of arcs in a MRMATE model can be very large. The

largest problems can have more than one-half of a million arcs.

Problems of this size require the in-core/out-of-core method.

37



One advantage of the RNATE problem is that the structure of the

arc costs in known. There will be many arce with zero cost. Theme

arcs are likely to be in the optimal basis. Therefore, it seems

reasonable to enter zero cost arom an often an possible.

The remaining arcs can be separated into two classess low cost

and high cost arcs. By separating the arcs into three different

files (zero, low, and high cost files) arcs with zero cost can be

preferentially entered, without calculating reduced costs for low and

high coot arcs. To ensure optimality all the arc= must be examined;

however, more time can be spent with the zero cost arcs.

Slack and surplus arcs are also very important in the solution

process. Theme arcs should be examined more often than other arcs.

If the *wrong' slack and surplus arcs are in the basis many pivots

might be performed unnecessarily. These arcs should not be kept out

of core. Information necessary to generate these arcs should be

available in core and their reduced costs should be recalculated

frequently.

38



6. Finding the Exiting Arc

In the aimplex method specialized for generalized networks, only

a limited number of arcs are candidates to exit the baste during any

9pivot. The rapid identification of these arcs is a reason the
specialized method in more efficient than the simplex method for

b general linear programming.

For any node, NODE, define the 'backpath' of NODE to be those

arc between NODE and the cycle for the component that contains NODE,

as well am those arcs on the cycle. In other words, the backpath for

NODE contain. those basic arcs whose corresponding node can be

6 "reached from NODE by use of the PRED structure only. For the

entering arc number ARC, the only arcs to change flow are those on

b the backpathe of TAIL(ARC) and HEAD(ARC). Figure 6-1 shows the arcs

- that will change flow for various combinations of HEADCARC) and

TAIL(ARC), referred to as HEAD and TAIL respectively.

If a single unit of flow vere placed on the arc entering the

basis, the flows on the arcs in the backpathe are the only ones which

must be updated so as to keep the net flow at each node the name.

For instance, the arc between TAIL and PRED(TAIL) must provide one

unit of flow at node TAIL. If that arc is orlinted from PRED(TAIL)

-y to TAIL and has multiplier of MULT, then the arc between

PRED(PRED(TAIL)) and PRED(TAIL) must provide I/NULT units of flow at

PRED(TAIL), and so on (see Figure 6-1).

This calculation is equivalent to determining the updated column

in linear programming. With this updated column, it is possible to

determine the amount of flow by which the entering arc flow can

39



r

, _ -UNITS OF WLOW REnCUIRED

iMULT I *1ULT 2

MULT 2

, : HUTAT1  UNITS OF FLOM.. REQUIRED

HEAD

TAIL

( PREDONE UNIT OF FLON REOUIRED

Figure 6-1. Flow Required at Nodes

40



change before meo basic arc reaches one of its bounds. The first

arc to reach one of its bounds is the exiting arc from the basis.

6.1 Calculating the Exiting Arc

The determination of the exiting arc involves two steps: the

development of the updated column and the determination of the

maximum flow change on the entering arc, ARC (before a basic arc

reaches one of its bounds). These two steps can be performed

. ?simultaneously for each node. For simplification, the presentation

* '*, here will separate the process. There are several cases to consider.

The first came assumes that the backpaths from TAIL and HEAD are

" K distinct, implying that TAIL and HEAD are in different components.

If the multiplier on ARC is MULT then placing one unit of flow on ARC

will require one unit of flow at TAIL and will provide NULT units of

flow at HEAD. The sign convention of a negative number for a demand

and a positive number for a supply will be adopted. The value of -1

for TAIL and NULT for HEAD is called the requirement.

Given the requirement at a node NODE, two pieces of information

are required: the update column entry for the arc between NODE and

PRED(NODE) 'and the requirement for PRED(NODE).

These values depend on tht orientation of ARC(NODE), the basic

arc between NODE and PRED(HODE). The following algorithm calculates

the entry in the updated column (UPCOL) and updates the requirement

.- for NODE (REQUIRE) to be the requirement for PRED(HODE).

if ARC(NODE) 4 0 then (*arc oriented from PRED(NODE) to NODE *)
REQUIRE to REQUIRE/NULT(HODE)l
UPCOL(NODE) an REQUIRES

else
. UPCOL(NODE) to -REQUIRES

41



REQUIRE to REQUIRE M NULT(NODE)j
endif

The process is slightly more complicated when a cycle, not a

self-loop, is reached. The effect of the cycle multiplier must be

taken into effect. Briefly, the cycle is used to create or destroy

flow as needed. The CHULT value determines the rate at which flow

can be created or destroyed. The effect of the cycle multiplier is

that when the cycle is reached, REQUIRE is replaced by REQUIRE / (I-

CHULT(CYCLE)). The equations above can then be used for the arcs on

the cycle. These calculations can be carried out independently for

the backpaths of HEAD and TAIL when the nodes are in different

components.

For the second case, when the two nodes are in the same

component, the backpaths will coincide at some point. The updated

column is the sum of the updated columns calculated using the above

* equations. If the backpaths coincide before the root cycle it is

possible to simply add together the REQUIRE values of the two

backpaths and continue as though only one backpath existed. If the

value of REQUIRE is zero (as it will be for pure networks) no further

calculations need be done; the rest of the arcs will not change in

flow. If the backpaths coincide only on the cycle, it is easiest to

proceed around the cycle twice making the necessary calculations and

add together the resulting updated columns.

An example of these calculations is given in Figure 6-2.

Given UP-COL(NODE) it is possible to determine the amount of

change permitted on the entering arc before the arc associated with

NODE reaches a bound. Let INCREASE to I if the entering arc is

42

-"'r ILL.*... .w--



3,
17-1

3s

3,+l

*TAIL 1.3 HEAD

~ label: MULT, LP COL

44



currently at zero flow and -1 if the entering arc has flow equal to

Its capacity. The calculation of the maximum change is an follows:

if (INCREASE * UPCOL(NODE) 2 0) then
( flow will decrease on ARC(NODE) 9)

C- MAX := FLOW(NODE) / UPCOL(ODE);
else

(* flow vill increase on ARC(NODE) *)
MAX := (CAPACITY(NODE) - FLOW(NODE)) / UPCOL(NODE);

endif

By taking the minimum value for MAX over all nodes with a

changing flow, the flow change on the entering arc is determined and

the exiting arc is identified. If this value is more than the

CAPACITY of the entering arc then the change in flow is the CAPACITY

of the entering arc and the exiting arc is the entering arc.

h..
4



7. Updating the Basis

Given the arc to enter and and the arc to leave the basis, the

final step in to update the basis structures. This update requires

updating the DUALm, the FLOW. and the rest of the basl structures.

7.1 Updating the Basis Structures

7.1.1 Pivot Type.

* The linked rooted tree method ham mix pivot types, depending on

the relationship between the entering and exiting arc.

Pivot type I occurs when the entering arc and exiting arc are the

same. This occurs when flow on the entering arc reaches its upper

bound or zero before any other flov reach their limits. In this

came, the basis remains the mame, so only FLOWs must be changed.

When TAIL and HEAD of the entering arc are In the same tree, the

pivot type is defined to be either 2, 3 or 4. Consider paths from

the entering tail node to the cycle and from the entering head node

to the cycle. The first node that occurs on both paths is called the

. meeting node (MEET). The (common) cycle node is called CYC. The

exiting arc can occur in three placem: before MEET, between MEET and

41
CYC, and after CYC. Theme three places correspond to pivot types 2,

3 and 4 respectively.

When TAIL and HEAD of the entering arc are in the same component,

S the pivot type in 2 or 5. If the exiting arc is on the cycle, the

pivot type is 5. Otherwise it is type 2.

45



If TAIL an, HEAD of the entering arc are in different components,

* the pivot type in 6 if the exiting arc is on a cycle, and in 2

otherwise.

Figure 7-1 given examples of all of these pivot types.

3 7.1.2 Common Routines

The main advantage of the linked rooted tree method of storing

.': the generalized network basis is that the basis update routines

involve a limited number of tree manipulation routines. Each pivot

type uses theme routines in a different way to create the new basis.

There are five tree manipulation routines required:

1) Hang tree (HANG) : Takes two trees and a node within the first

tree and attaches the second tree to the first below the node.

2) Isolate subtree (ISOLATE): Takes a tree and a node within the

tree and isolates the subtree below the node by creating a nev tree.

3) Reroot tree (REROOT) : Takes a tree and a node within the

tree and makes that node the root of the tree.

4) Reverse cycle reroot (REVCYCREROOT): Takes a series of trees

connected by PRED values and creates a new tree consisting of all of

them in reverse order.

5) Cycle reroot (CYCREROOT): Takes a series of trees connected

by PRED values and creates a new tree consisting of all of them.

.'-

7.1.2.1 HANG Routine

INPUT:

46

.4,



(a) pio tp

(b) pivot type 2 ()pivot type 2

(d) pivot type 3 (e) pivot tyne 4

Key: ,,entering arc
-exiting arc

• m.'other basic arcs

~Figure 7-1. Pivot Types

47

404



..

4.

".2

(f) pivot type 5 (g) pivot type 6

AI

i) .

(h) pivot type 7

'S i

Figure 7 .1,-Pivot Types (cont.)

48



ROOT: a node, not necessarily the root of one tree;

TREE: the root node of another tree.
i OUTPUTs

Updated PRED, THREAD, LEVEL and RTHREAD for a tree with the nodes

of TREE below ROOT. (See Figure 7-2).

METHODs

(A) Find the final node in preorder traversal (LAST) in the
subtree below ROOT by following the THREAD values;

(B) LEVEL(TREE) to LEVEL(ROOT) + 1;
4,- NODE so THREAD(TREE);" , "while NODE <> TREE do

LEVEL(NODE) so LEVEL(PRED(NODE)) + 1;
NODE so THREAD(NODE);

" ', ndvhile;

: (C) TEMP so THREAD(LAST);THREAD(AST) so TREE;

THREAD(RTHREAD(TREE)) so TEMP;
RTHREAD(TEMP) := RTHREAD(TREE);
RTHREAD(TREE) so LAST;PRED(TREE) := ROOT;

DISCUSSION:

Two common programming structures are exhibited in this routine.

In section B, the LEVEL structure in updated for TREE. Because the

THREAD in the preorder traversal, the level of PRED(NODE) in always

, - calculated before the level of NODE. Since LEVEL(NODE) is always

equal to LEVEL(PRED(NODE)) + I within trees, the level calculation is

4simplified.

i: ~The second structure is in section C. For roots of trees, the

reverse thread of the root is always the last node fn the preorder

traversal. This means that finding the last node in TREE is easy, as

opposed to the last node below ROOT. Section A is needed to find the

49



7- - --

BE OR 
H NG

,kI

101

25

34

6

I APTER HANG (n,l)

*1 .*~Figure 7-2. H.ANG Routine

"I 50

pN4



last node below ROOT.

7.1.2.2 ISOLATE Routine

INPUT:

NEWROOT: a node in a tree

OUTPUT:

Updated THREAD and RTHREAD so that nodes below NEW ROOT form

a tree rooted at NEW-ROOT. (See Figure 7-3).

I. , ETHODs

(A) Find the last node (LAST) in the subtree rooted at NEW-ROOT

by following the THREAD value.;

(B) THREAD(RTHREAD(NEWROOT)) s- THREAD(LAST)l
RTHREAD(AST) : RTHREAD(NEWROOT);
THREADCLAST) t- NEW ROOT;
RTHREAD(NEWROOT) to LAST;

, DISCUSSION:

Once the last node in the subtree below NEW-ROOT has been

located, rethreading involves only node. LAST and NEWROOT.

51



-- --- -

p.- 
- - - - a7

Lj

BEFORE ISOLATE

-~A AFEIIOATf1

risture 7-3. Isolate Routine

52



!5 . - . .. . . -- : , -
:  

? ' 
•  

: w 1 . ,, 1- S .. ..-- - - ,- - - - - . . . . . . .

V.

7.1.2.3 REROOT Routine

INPUT:
TREE: the root node of the subtree to be rerooted;

NEW-ROOT: a node in the tree rooted at TREE.

OUTPUTs

Updated PRED, THREAD, LEVEL and RTHREAD for a tree

consisting of the node. below TREE, with root, NEW-ROOT. (See

4 Figure 7-4).

METHOD:

LEVEL(NEWROOT) := 0;

- "NODE - NEW ROOT;
PREY :- NEWROOT;
while PREV <> TREE do

ISOLATECNODE);
TEMP :- PRED(NODE);
if NODE 4> NEWROOT then

HANG(PREV, NODE);
endif;
PREY a= NODE;
NODE a= TEMP;

endwhile;

DISCUSSION:

Using HANG and ISOLATE, rerooting a tree at a new node is a

simple task. Each node on the path from KEWROOT to TREE in isolated

' and then hung from the previous node. The temporary variable TEMP in

required because HANG changes the value of PRED(NODE).

.5

53

l . . . ..... ... . .• • -. -.. -. - .-... , - - -" - "



BETREE

i7

'l

do

9 254



7.1.2.4 REVCYCREROOT Routine

INPUTS:

FIRSTTREEt First tree of the sequence to put together;

LAST-TREE: Last tree of the sequence;

OUTPUTS:

Updated PRED, THREAD, RTHREAD and LEVEL values for a mingle tree,

rooted at FIRST-TREE, consisting of trees rooted at predecesmor

values from FIRST-TREE to LAST-TREE. Note that this definition

requires that the predecessors along the path from FIRST_TREE to

LAST-TREE be reversed. (See Figure 7-5).

METHOD:

NODE i FIRSTTREE;
PREY := FIRST-TREE;
while PREV <> LAST-TREE do

TEMP := PRED(NODE);
if NODE <2 FIRSTTREE do

HANG(PREV, NODE);
endif
PREY NODE;
NODE s" TEMP;

endvhile;

DISCUSSION:

This routine is essentially the same an REROOT, except that

ISOLATE ha. already been accomplished.

55



First Tree Last Tree

56

-. ~ .. .Before



7. 1.2.5 CYCREROOTp
INPUTS.

FIRST-TREE: First tree of the sequence to put together;

LAST-TREE: Last tree of the sequence;

OUTPUTS:

Updated PRED, THREAD, RTHREAD and LEVEL values for a single tree,

rooted at LAST-TREE, consisting of trees rooted at predecesor values

from FIRST-TREE to LAST-TREE. This differs from REVCYCREROOT only

in that LAST-TREE is the root instead of FIRST-TREE. (See Figure 7-

6).

'. ...%

METHOD:

Reverse the PRED values from FIRST_TREE to LASTTREE;

CYCREROOT(LASTTREE, FIRSTTREE);

DISCUSSION:

Since CYCREROOT reverses the PRED values, then by reversing the

PRED values before calling CYCREROOT, the PRED values remain

unaffected.

I Z

57

.. ,R Pq J%)j '.



First Tree Last Tree

II

e* 
- -- a 

Is

Is 
--

2 3 5 8 9 10

8 958



7.1.3 The Pivot Routines

7.1.3.1 Pivot Type 1

Since the exiting and entering arc are the same, no basis

structures other than FLOW must be updated.

7.1.3.2 Pivot Type 2

Pivot type 2 can occur in one of three cases: entering head

and tail are in the same tree, they are in different trees but the

same component, or they are in different components. In all cases,

the exiting arc is on either the path from the entering tail node to

the cycle or the path from the entering head node to the cycle, but

not both. The LEAVE node is defined to be the node associated with

the path containing the exiting arc. The other node in called the

STAY node (see Figure 7-7). EXIT referm to the node that is

associated with the exiting arc.

The routine to execute a type 2 pivot ins

REROOT(EXIT,LEAVE);

HANG(STAY, LEAVE);

y 2. See Figure 7-8.

59



.77

Stay 1

enern arc

Predeesso

Figure 7-7. ivot Type 2 IiilPsto

60S

VS



t •

%9
% % %

5 5

6 6 9

#8

After (,)

9. '

d FP

°° I

Afe ero 8,)Ate tn ( 49

- Pedceso
9. . I

...4r a

3 7 Fgue -. 3vt y7



7.1.3.3 Pivot Type 3

Pivot type 3 occurs when the entering tail and head are in the

sme tree and the exiting arc is between MEET and CYC (Figure 7-9).

Denote the entering tail end hed nodes an ETAIL and EHEAD.

The algorithm for pivot type 3 is:

NODE to ETAILS
PREV to ENEAD;
while NODE <> MEET do

ISOLATE(NODE);
TEMP i= PRED(CODE);
PRED(NODE) := PREV;
PREV := MODE;
NODE in TEMP;

endwhile;

NODE to EHEAD;
PREV in ETAIL;
while NODE <> MEET do

ISOLATE(HODE);
MODE := PRED(NODE);

endwhile;
"- -PRED(MEET) a= PREV;

REROOT (EXIT, MEET)U
See Figure 7-10.

.7

°I~6

S.-

~.r.

62

- - 'A" -~~



1 2

3 CYC

4

5 EXIT

6 MEET

7 10

ETAIL 8 . .. EHEAD

9 12

Figure 7-9 Pivot Type 3 -Initial Position

63



-, -w -V

2 2

3

-.-

4 4

5S

* 64



.,

% 
'A

eJ/

5

., N

6

7 10

8 11

S%

*~~~ a-'%

Fiur 7-0 Pio Typ 3 uin ivt(Cn.

a65



7.1.3.4 Pivot Type 4

Pivot type .4-occurs when the entering head and tail nodes occur

in the sme tree and the exiting arc is on the cycle (Figure 7-11).

* The algorithm for pivot type 4 im:

* NODE 3ETAIL;

PREY : EHEAD;
while NODE <> MEET do

ISOLATE(KODE);
TEMP ts PRED(NODE);
PRED(NODE) :- PREV;
PREY in NODE;
NODE to TEMP;

endvhile;

NODE t- EHEAD;
PREY t- ETAIL;
while NODE <> MEET do

XSOLATE(NODE);
PREY : NODE;
NODE a.PRED(NODE);

andvhile;

PRED-EXIT in PRED(EXIT);
REBOOT(CCYC, MEET) j
REVC'fCREROOT(CCYC, EXIT) ;
CYCREROOT(PRED EXIT, CYC);

See Figure 7-12.

66



EXIT 1 2

3 CYC

4

5

*6 M4EET

7 10

p,- (

ETAIL 811 EHEAD

I.

9 12

Figure 7-11. Pivot Type 4;- Initial Position

,, MEET



4 4

i5

6 6

%w%

After Section A After Section

, ', Figure 7-12. Pivot Type 4 - During Pivot

68

..



: ', I ''

,4 4

"-F i u e - 2 . P vo-y p ( C n . )-

669

.. ' "-~".. %" 
' . , ..- , 

%,. 
."4,, - "" .

'--



2 4 W YW

,%s.

I%

OJIJ

7 1

After Entire Routine

Figure 7-12. Pivot Type 4 (Cont.)

70

004./ a



7.1.3.5 Pivot Type 5

Pivot type 5 occurs vhen the entering head and tail are in the

same component, but in different tree.. The exiting arc occurs on

the cycle (othervise it vould be pivot type 2). If the predecessor

path from the entering tail node to (and around) the cycle is

compared to the path from the entering head, one of themes path vill

reach EXIT first. Denote the node with the path to first reach EXIT

as LEAVE and the other am STAY. Denote the corresponding cycle nodes

am CYCLEAVE and CYCSTAY (wee Figure 7-13).

The algorithm for pivot type 5 is:

NODE t- LEAVE;
PREV to STAY;
vhile NODE <> CYCLEAVE do

ISOLATE(NODE);
TEMP s= PRED(NODE);
PRED(NODE) := PREV;
PREY to NODE;
NODE s= TENP;

wndvhile;

PREDEXIT :a PRED(EXIT);
REVCYCREROOT(CYCLEAVE, EXIT);

NODE to STAY;
PREY to LEAVE;
vhile NODE <3 STAYCYC do

ISOLATE(NODE);
PREV t= NODE;
NODE to PRED(NODE);

4" endvhile;

CYCREROOT(PREDEXITCYC);

See Figure 7-14.

71



EXIT

1 20
LEAV

'S8

Fiue713 io yp ntalPsto

'72



i%

1 2

S%,
% I

5

id

After Section A After Rev-Cyc-Reroot (3,1)

Figure 7-14. Pivot Type 5 During Pivot

73



Urif W'

% %

-92

4 ---

'I%

%5 25

h~ ~ 6

OL:a %

:4,

Aftere Sectio Bio Afte5Drin Pivot (cn.

I7

.J%



7.1.3.6 Pivot Type 6

Pivot type 6 occurs when the entering arc has its nodes in

different components and the exiting arc occurs on a cycle. (If the

exiting arc is not on a cycle then the pivot type is 2).

Denote the node of the entering arc that is in the same component

an the exiting arc a. LEAVE and the other end as STAY. Let CYC be

the cycle node associated with LEAVE. See Figure 7-15.

The algorithm for pivot type 6 is:

REROOT(CYC, LEAVE);
PREDEXIT :- PRED(EXIT);
REVCYCREROOT(CYC, EXIT);
CYCREROOT(PREDEXIT, CYC);
HANG(STAY, LEAVE);

See Figure 7-16.
'a

7.2 Updating the Duals

In order to calculate reduced costs quickly, dual values

associated with the node are maintained in core. Because the dual

variable calculation is a computationally expensive operation, it is

fortunate that only a small number of dual values change at each

iteration. The duals that change are exactly those whose node

receives a new LEVEL value.

The key to calculating duals in that reduced cost for

'p. 75



EXIT 12

3 4 CYC8

67



% % %

1 2

3 48

% %
%S

%
%

%

1 2

5

a%

(e -v -ero 41
S6

Fiue71. PvtTye6 Drn io

p7



-. si.-w .~-r .' 3.r. -- j .....-...- r p.

% 
%

2 0

I

After Cyc-Reroot (4, 2)

9 1

II

3 4I7

After Pivot

Figure 7-16. Pivot Ty-e 6 During Pivot (Cont.)

78

, -] .">....... "-.



S,,arcs in the basis are alvays zero. The reduced cout calculation in

(from Section 5)

MULT a DUAL(HEAD) - DUAL(TAIL) - COST

Duals for generalized network. are uniquely determined.

Calculation of duals for nodes on the cycle iu involved and in

reviewed in Section 7.2.1. The dual for a node off the cycle is

based solely on the dual value of it. predecesor. This i shown in

* ~Section 7.2.2.

. 7.2.1 Dual Values on the Cycle
I

Given a cycle with k nodes there are k arcs between them. Each

. arc create. one reduced coat calculation. Therefore, there are k

linear equation. to find k unknown duals.

W oIf one dual on the cycle in given, the rest can be obtained

by traversing the cycle with the PRED value. The method to find

one dual on the cycle follows.

p Let the node. on the cycle to be I ... k, with PRED(i) i i 1 and

PRED(k) - 1. The following calculates DUAL(1):

TOT-SUM to 0;
TOT-MULT :- 1;
NODE t- 1;
repeat

-* .if ARC(NODE) < 0 then (* ARC in from PRED(NODE) to NODE a)
TOTMULT to TOTJIULT / NULT(NODE)S

"eTOT-SUM t- TOT-SUM - TOTIULT * COST(NODE);
else

TOT-SUM to TOT-SUM + TOTMULT * COST(NODE);
TOTMULT to TOT_MULT * MULT(NODE);

endif;
NODE to PRED(NODE);

until (NODE a 1);

DUAL(l) to TOTSUH / (1-CMULT(1));

79

- - -- - - -



Duals of cycle nodes associated with self-loops are esier. For

i this case, the dual is simply the cost divided by the self-loop

multiplier.

- 7.2.2 Dual Values not on the Cycle

The dual value for a node of the cycle in calculated as:

R.

L*, ' iff ARCINODE) < 0 then

DUAL(NODE) in (DUAL(PRED(NODE)) * COST) / KULT;
es DUAL(NODE) s: DUAL(PRED(NODE)) HULT - COST;
endif

It is important that the dual variable updates are performed in

the correct order. For every node, the dual for the PRED of the node

must be calculated before the dual of the node can be calculated. it

- is for this reason that THREAD is defined to be the preorder

traversal. Following the thread will ensure update of the PRED of

any node before the node itself; the DUAL update can be accomplished

at the same time. This reduces the number of times any node must be

examined during a pivot, yielding in a significant reduction in

-computation time.

7.2 Updating the Flow.

The final structure to update is the basic flow values. Most of

the work in this update vas accomplished during the calculation of

L the exiting arc. The updated column was the change in flow on the

basic arcs if one unit of flow was put on the entering arc. This

80



allowed a calculation of the maximum flow that could be placed on the

entering arc without violating any bounds. This value in multiplied

by the updated column and added to the current flows to produce the

updated flown.

Algorithmically, it is easier to perform this update while the

basis in being updated. An each node is visited it is a simple

matter to calculate the amount the flow will change and update FLOW

" accordingly. Some nodes are not visited during the basis update and

those nodes must be visited solely to update the flown. For

instance, in pivot type 1, no basis update is performed but the flows

must be updated. All nodes visited in the calculation of the exiting

arc must be revisited to update the flows.

.w

j,

81

S°



8.0 OTHER CONCERNS

Major portions of the primal simplex method have been covered*

Given a basis it is possible to find an arc to enter the basis,

determine the arc to exit the basis and update the basis. The only

other step of the primal simplex method is to find an initial basis.

Section 8.1 gives two methods for doing this.

One other concern is the efficiency of the generalized network

primal simplex method when solving a pure network. It in generally

thought that a pure network code will execute two or three times

;6; faster than a generalized network code. Some of this improvement is

due to the fact that generalized netvorks must keep track of the

multipliers while the pure network has one less piece of data for

each arc. Some efficiency relates to the structure of the pivots

used with pure networks. This pivot and basis structure can be used

within a generalized network code, so pure networks and 'almost' pure

networks can be solved more quickly than generalized networks with

the generalized network simplex method. This is detailed in Section

* 8.2.

", +' 8.1 Initial Basis

The starting basis has a large effect on time required by the

, ; primal simplex method. Ideally, if the optimal basin is used as the

starting basis, then no pivots need be performed. The concept of

quality of the starting basis is difficult to quantify, although it

seems reasonable to assume that a good starting basis is one which

82

Ac. P .



has a large number of arcs that are also in the optimal basis.

If too much time is spent in trying to find a good starting

basis, the total execution time might be larger than using a poorer,

but easier to find, basis.

An initial basis must satisfy the following conditions:

q 1) There must be one arc in the basis for each node.

2) Each component generated by the arcs in the basis must have

exactly one cycle, which may be a self-loop.

3) The net flows into and out of each node must be equal to the

V.' supply or demand at that node.

4) The flow on any arc not in the basis must be either zero or

the capacity of the arc.

5) The flow on any arc must be between zero and the capacity of

the arc inclusive.

VSection 8.1.1 describes the easiest basis to finds the

artificial start basis. By spending essentially no time in creating

the initial basis, this basis makes no attempt to guess which arcs

will be in the optimal basis.

'Section 8.1.2 discusses basis creation methods that try to guess

. which arcs are optimal. These advanced start methods are often

problem specific, al.though some general purpose methods are possible.

8.1.1 Artificial Start

-, Associated with each node in a generalized network is a self-

loop, representing the slack or surplus variable at the node. If the

supply or demand at the node must be satisfied then there is a large

cost on the self-loop, otherwise the cost is zero. The artificial

83



start basis is as follows:

1) The flow on every self-loop is the supply or demand at the

S node.

2) The flow on every other arc is zero.

.4 The arcs in (1) above form the basis. This basis satisfies the

five conditions given in Section 8.1. It is also easy to create.

Furthermore the PRED, THREAD, LEVEL and RTHREAD are very easy to

* calculate. Figure 8-1 illustrates this for the network in Figure

2-3.

The disadvantage of this method is that no attempt is made to

determine which arcs will likely occur in the optimal basis. The

number of pivots required after an artificial start is probably more

than the number required after other types of starts.

8.1.2 Advanced Start

A basis that attempts to contain arcs that will occur in the

optimal basis is referred to as an advanced start. Advanced starts

can often be determined from the structure of the particular problem

types that are being solved. Many, although not all, advanced start

strategies adopt tne following form:

1) Sort the arcs in decreasing order of attractiveness
(likelihood to be in optimal basis)

2) Using the most attractive unexamined arc, place the maximum
amount of flow that will keep feasibility at the nodes and the arc on
the arc.

3) Repeat Step 2 until all of the arcs have been
examined.

Algorithms that adopt the above strategy and place all

unallocated supply and demand on the self-loops create a basis that

84

N



H

h~H

H H

VH

Figure 8-1. Artificial Basis

85

y ~ - - -- ,." .. .-. % a. . .*: . . °. - * . ' . . ' . '.' ; .' , , *b....... .. . - ..



satisfy the live conditions in Section 8.1 (possibly some welf-loopa

with zero flow will have to be added to the bamis). If easy methods

of calculating attractiveness are available and if attractiveness is

a true measure of the likelihood of being in the optimal basia then

advanced starts of this form are generally fairly effective.

! In Figure 8-2 the arcu in Figure 2-3 are ordered by increasing

coat and an advanced start basim is formed.

8.1.3 Specialization for MRMATE

Arcs of the NRMATE model are already sorted into three classe.

based on attractiveness. This permit. an easy advanced start. Arcs

in the zero cost arc file are placed into the basis first. Next, low

coat arcs are uaed. Because there are a large number of high cost

S I arcs, it eimms better to ignore them in creating an advanced start

and let the rest of the simplex algorithm choose which high cost arcs

to ume by pivotting them into the bamis am needed.

8.2 Effect of Pure Network Structure

Pure netvor.. can be molved more quickly than generalized

"* networks. This is for two reamons:

1) Pure network. have multiplier. of one. Hence, rather than

using multiplications and divisions, the various simplex calculations

can assume the MULT is one.

2) The basis structure of pure networks is simpler than that of

generalized networks. Each component of a pure network basis must

be rooted at a self-loop.

86

V $.I



Fiue82 dane tr ai

N8

e .'~ 
;,



It is possible for a generalized network code to solve pure

networks almost as quickly a pure network code by performing the

following:

1) A multiplier in compared to I before a division or

multiplication. If it equals I then the division or multiplication

in not needed.

2) Data structures are used that are equivalent to pure network

data structures in the came of a welf-loop root.

Unfortunately, handling the multipliers as suggested in point one

will slow down execution for all networks. This decrease in speed

*may not be excessive but may not be worthwhile if the number of pure

arcs in small. Speed increases will occur, however, even in

generalized networks, as long as the network has a large proportion

'of pure arcs.

Data structures used in pure networks are exactly those outlined

in Section 4 in the case where the root cycle is a self-loop.

Advantages of the basis structure can occur in any generalized

network that can be converted to a pure network by scaling the rows

and columns of the constraint matrix. The basis advantages can be

gained even if the scaling is not performed. An example of a

generalized network that can be scaled to a pure network is given in

Figure 8-3.

The main advantage of the pure network structure is that all

pivots will be of types I or 2 (if the wlf-loops are replaced with

artificial arcs and an artificial node, see [3]). No cycles are

ever created, so no cycle multipliers need be calculated (Section 4).

LCalculation of the cycle multiplier is a very expensive operation,
since it Involves many multiplications and divisions.

88



It oeems likely that a network that is *almost' transformable to

a pure network would have many of the same advantages an a network

transformable to a pure network. OAlmostm must be defined very

carefully. For instance, Figure 8-4 shows a network with just one

arc with a multiplier not equal to one. However, this network is

equivalent to the network in Figure 2-3 and the two networks are

solved in almost the same way by a generalized network simplex

method. The number of cycle calculations is the same, as is the time
i

required. The reason for this is that non-pure area occur in the

basis disproportionately for their quantity. This shows the

.,T disadvantage of defining 'almost' pure networks in terms of the

percentage pure arcs.

'Almost' pure networks are those whose valid basis tend tG have

self-loope, rather than cycles. Cycles are formed when the exiting

jarc occurs on the common part of the backpaths formed by the entering

arc. 'Almost' pure networks require that for a 'typical' basis and

" - entering arc, the exiting arc occurs on the separate parts of the

backpath (see Section 6.1).

8.2.1 Specialization for HRMATE

As might be expected, the JRMATE model can be a pure,4

- transformable to pure, or 'almost' transformable to pure network. If

there are no sea channels then all of the multipliers in the network

are one, so a pure network results. If there are no air channels

then the network is transformable to a pure network. This is

equivalent to using the volume of the movement requirement rather

,. than the weight.

89



4.5I '-10 1 4.5 100
9 5

5 100

-" -40

2 2.0 100

7" 50
I1.

-45 5

7 50

all multipliers are +1 (b) Equivalent Pure Network

- Figure 8-3. Generalized Network Transformable to Pure Network

90



-100" , 5 50

6 50

i'-300 2 1 50

I

* *3
Multiplier

-
300

-40 3'

: 10 300

-1 600

1 [ 000 4600

.13 
600

' ,Figure 8-4. Equivalent "Almost Pure" Network

91

, .., -? .; ., . . - ' ,-' .5 .: -- .-. .. ... - ..i. - ---. -> . • - .- " , -. ." . .-- -°- , .. . -. - . .- , -. -, ',- .-A



,.-2

If there are far more air channels than sea channels, or more sea

channels than air channels, then the resulting network is Oalmost"

transformable to a pure network am long as the less numerous channels

are not disproportionately important. This is due to the following.

.: Given a network with far more air channels than sea channels, a basis

and an entering arc, if the channels are equally important, the

typical entering arc will be an air channel arc. The backpathe

represent the channels that will have to change flows in order to

permit the entering arc to join the basis. Typically, thib will only

involve air channels. This means that the exiting arc cannot occur

on the common part of the backpath, since a cycle with a cycle

multiplier of i would be created. A similar argument holds for more

sea channels than air.

How many more is *far more'? Certainly 75 air channels and 25

sea channels will not exhibit much pure network structure, since most

backpaths will contain both air and sea channels. Also, 99 sea

channels and I air channel will exhibit a lot of pure network

F structure, since most pivots will reassign flow among the sea

channels. The effect of pure network structure is further examined

: . ..

in 141.

,1 9

.o 92

-!



AD-A168 298 GENERALIZED NETW.ORK IMPLENENTRTIONS(U) GEORGIA INST OF 2/2
TECH ATLANTA PRODUCTION AND DISTRIBUTION RESEARCH
CENTER J J JARVIS ET AL 1986 PDRC-86-03

I UNCLASSIFIED NB84-85-C-797 F/G 5/1 NL

EE



JI2

ilU41 A 12

NATIONA &MNAU OF S

%gSOY IO" TISI



p REFERENCES

[1] Bazaraa, M.S. and 3.3. Jarvis, Linear Programming and Network
Flows, John Wiley and Sons, New York, 1977.

E23 Brown, 6.G. and R. McBride,"Solving Generalized Networks", Management
Science, 30, 12, pp 1497-1523.

E3] Jarvis, 3.3., H.D. Ratliff, D.E. Eisenstein, A.V. Iyer, W..
Nulty, and M.A. Trick, "System Description: SYSTEM FOR CLOSURE
OPTIMIZATION AND PLANNING EVALUATION (SCOPE)", PDRC Report 84-09,
Georgia Institute of Technology, 1985.

[4] Jarvis, 3.3., H.D. Ratliff and M.A. Trick, "Generalized Network
Results on a Microcomputer", PDRC Report (to be published), Georgia
Institute of Technology, 1986.

E5] Kennington, 3.L. and R.V. Helgason, Algorithms for Network
Proqramminq, John Wiley and Sons, New York, 1980.

93



'I,


